软硬件环境
- ubuntu 18.04 64bit
- NVidia GTX 1070Ti
- anaconda with python 3.7
- CUDA 10.1
- cuDNN 7.6
- opencv 3.4.2
- caffe 1.0.0
视频看这里
此处是 youtube
的播放链接,需要科学上网。喜欢我的视频,请记得订阅我的频道,打开旁边的小铃铛,点赞并分享,感谢您的支持。
简介
先说一下环境,使用 anaconda
的 python
虚拟环境,支持 opencv
,支持 CUDA
和 cuDNN
加速,支持在 python
中调用 caffe
。基础组件部分可以参考前面的文章,本文就不赘述了
基础环境准备
安装依赖包和工具
sudo apt install build-essential cmake git ffmpeg libatlas-base-dev libtiff-dev pkg-config python3-dev libavcodec-dev libavformat-dev libswscale-dev libtbb-dev libjpeg-dev libpng-dev libavcodec-dev libavformat-dev libswscale-dev libv4l-dev libx264-dev libboost-all-dev libhdf5-serial-dev libleveldb-dev liblmdb-dev libhdf5-dev
pip install protobuf
opencv
这里把 opencv
单独拿出来说,是因为 opencv
的安装方法非常多
- apt install python3-opencv
- conda install opencv
- 源码编译
通过 apt install
安装最简单,也是最不容易出错的方法;其次是 conda install
,最容易出问题的是自己编译源码,编译参数复杂,依赖库繁多,而且还有版本差异。
安装完成后,建议使用 opencv_version
命令来查看当前版本,默认 ubuntu 18.04
源提供的是 3.2.0
版本,conda
的会更高一些,这里是 3.4.0
,源码安装的话,注意在 sudo make install
后再执行一句 sudo ldconfig
。本文以 conda
的方式进行安装。
编译caffe
接下来就可以编译 caffe
了
git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config
编辑文件 Makefile.config
,主要是一些路径的修改,贴上已经修改好的
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!
# cuDNN acceleration switch (uncomment to build with cuDNN).
# 启用cuDNN加速
USE_CUDNN := 1
# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1
# uncomment to disable IO dependencies and corresponding data layers
# 启用opencv
USE_OPENCV := 1
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
USE_HDF5 := 1
# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1
# Uncomment if you're using OpenCV 3
# opencv大版本号是3,这里一定要注意
OPENCV_VERSION := 3
# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++
# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr
# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
# -gencode arch=compute_20,code=sm_21
# CUDA_ARCH := -gencode arch=compute_20,code=sm_20
# 这里使用的是CUDA10.1,所以要注释掉前两行
CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_52,code=sm_52 \
-gencode arch=compute_60,code=sm_60 \
-gencode arch=compute_61,code=sm_61 \
-gencode arch=compute_61,code=compute_61
# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas
# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib
# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app
# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
# Python头文件路径,再加上numpy的头文件路径
PYTHON_INCLUDE := /home/xugaoxiang/anaconda3/include/python3.7m \
/home/xugaoxiang/anaconda3/lib/python3.7/site-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
# 默认是python2,这里使用python3,一定要改,不然后面会报错相应没人在用python2了吧
PYTHON_LIBRARIES := boost_python3 python3.7m
# PYTHON_INCLUDE := /usr/include/python3.5m \
# /usr/lib/python3.5/dist-packages/numpy/core/include
# We need to be able to find libpythonX.X.so or .dylib.
# libpython*.so库的路径
PYTHON_LIB := /home/xugaoxiang/anaconda3/lib
# 如果设置了ANACONDA_HOME环境变量,可以使用下面的设置方法,作用一样
# PYTHON_LIB := $(ANACONDA_HOME)/lib
# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib
# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /home/xugaoxiang/anaconda3/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial/
# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib
# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1
# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# 启用pkg_config,方便caffe找到opencv
USE_PKG_CONFIG := 1
# N.B. both build and distribute dirs are cleared on `make clean`
# 默认编译的目录,所有的目标文件、可执行文件、库都存放在这里
BUILD_DIR := build
DISTRIBUTE_DIR := distribute
# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# 是否打开debug信息
# DEBUG := 1
# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0
# enable pretty build (comment to see full commands)
Q ?= @
完成后,执行
make all -j12
参数 -j
指的是使用多少个 cpu
核心,目的是加快编译速度,根据自己的实际情况设定
为了能在 python
中调用 caffe
,还需要执行
make pycaffe -j12
至此,整个编译就结束了。
验证
使用 ipython
环境测试
如果细心一点,会发现,新开一个 terminal
,同样打开 ipython
,同样 import caffe
,但是会报错,这是什么原因?
在不报错的 terminal
中,查看环境变量就会发现端倪
在编译 caffe
的过程中,会 export
环境变量 PYTHONPATH
,所以我们在使用前也需要这样做
为了简便,可以将声明语句写入 ~/.bashrc
中,就不用每次都去执行了
export PYTHONPATH=/home/xugaoxiang/Works/github/caffe/python:$PYTHONPATH
Q & A
Q1
编译过程碰到了 tiff
相关的错误
这是由于之前 opencv
源码编译引起的,这里特别要注意一点,如果是从源码开始编译 opencv
,那么在配置的时候一定要加上选项 -D BUILD_TIFF=ON
。还有就是尽量不要同时拥有 apt
和 conda
安装的2种环境,对新手来说比较容易出错。
Q2
进入 ipython
中,import caffe
报错
将 libhdf5_hl.so.100
的路径加入 LD_LIBRARY_PATH
中
export LD_LIBRARY_PATH=/home/xugaoxiang/anaconda3/lib:$LD_LIBRARY_PATH
Q3
进入 ipython
中,import caffe
报错
修改 Makefile.config
,修改 PYTHON_LIBRARIES
为
PYTHON_LIBRARIES := boost_python3 python3.7m
默认的是 python2
Q4
关于 caffe
中使用源码编译的 opencv4
,由于 opencv4
的版本差异,都会报错
这是由于在 opencv4
中,原来版本中的宏 CV_LOAD_IMAGE_COLOR
和 CV_LOAD_IMAGE_GRAYSCALE
已经改成了 cv::IMREAD_COLOR
和 cv::ImreadModes::IMREAD_GRAYSCALE
,所以,需要在 caffe
源码目录中查找并替换,才能够编译成功
Q5
编译过程中报 hdf5
头文件找不到?即使是执行了安装命令也一样
sudo apt install libhdf5-dev
src/caffe/layers/hdf5_data_layer.cu:10:10: fatal error: hdf5.h: No such file or directory
#include "hdf5.h"
^~~~~~~~
compilation terminated.
Makefile:604: recipe for target '.build_release/cuda/src/caffe/layers/hdf5_data_layer.o' failed
make: *** [.build_release/cuda/src/caffe/layers/hdf5_data_layer.o] Error 1
make: *** Waiting for unfinished jobs....
这时候需要修改 Makefile.config
文件,在 INCLUDE_DIR
后添加路径 /usr/include/hdf5/serial
,在 LIBRARY_DIR
后添加 /usr/lib/x86_64-linux-gnu/hdf5/serial