软硬兼环境
- windows 10 64bit
- anaconda with python 3.7
- nivdia gtx 1066
- opencv 4.2.0
原理
分别使用人脸、性别、年龄模型,使用 opencv
中的 dnn
模块来预测图片或者视频中人物的性别和年龄。模型已经打包好了,自行下载
百度盘链接:https://pan.baidu.com/s/15-BrzjKyv1Jh4kpMsPLo-g
,提取码:hyn2
代码示例
import cv2
import argparse
# 获取脸部位置
def getFaceBox(net, frame, conf_threshold=0.7):
frameOpencvDnn = frame.copy()
frameHeight = frameOpencvDnn.shape[0]
frameWidth = frameOpencvDnn.shape[1]
blob = cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections = net.forward()
bboxes = []
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
x1 = int(detections[0, 0, i, 3] * frameWidth)
y1 = int(detections[0, 0, i, 4] * frameHeight)
x2 = int(detections[0, 0, i, 5] * frameWidth)
y2 = int(detections[0, 0, i, 6] * frameHeight)
bboxes.append([x1, y1, x2, y2])
cv2.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight / 150)), 8)
return frameOpencvDnn, bboxes
parser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
parser.add_argument('--input',
help='Path to input image or video file. Skip this argument to capture frames from a camera.')
args = parser.parse_args()
faceProto = "opencv_face_detector.pbtxt"
faceModel = "opencv_face_detector_uint8.pb"
ageProto = "age_deploy.prototxt"
ageModel = "age_net.caffemodel"
genderProto = "gender_deploy.prototxt"
genderModel = "gender_net.caffemodel"
MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']
# 使用opencv中的dnn模块,分别加载3个模型
ageNet = cv2.dnn.readNet(ageModel, ageProto)
genderNet = cv2.dnn.readNet(genderModel, genderProto)
faceNet = cv2.dnn.readNet(faceModel, faceProto)
cap = cv2.VideoCapture(args.input if args.input else 0)
padding = 20
while cv2.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv2.waitKey()
break
frameFace, bboxes = getFaceBox(faceNet, frame)
if not bboxes:
print("No face.")
continue
for bbox in bboxes:
face = frame[max(0, bbox[1] - padding):min(bbox[3] + padding, frame.shape[0] - 1),
max(0, bbox[0] - padding):min(bbox[2] + padding, frame.shape[1] - 1)]
# 预处理
blob = cv2.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds = genderNet.forward()
gender = genderList[genderPreds[0].argmax()]
print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))
ageNet.setInput(blob)
agePreds = ageNet.forward()
age = ageList[agePreds[0].argmax()]
print("Age Output : {}".format(agePreds))
print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))
label = "{},{}".format(gender, age)
cv2.putText(frameFace, label, (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2,
cv2.LINE_AA)
cv2.imshow("Age and Gender", frameFace)
执行上述代码,使用 usb cam
python demo.py